Logo Search packages:      
Sourcecode: yade version File versions  Download package


// 2009 © Václav Šmilauer <eudoxos@arcig.cz> 


using namespace std;


void PeriIsoCompressor::action(){
      if(!scene->isPeriodic){ LOG_FATAL("Being used on non-periodic simulation!"); throw; }
      if(state>=stresses.size()) return;
      // initialize values
            Bound* bv=Body::byId(0,scene)->bound.get();
            if(!bv){ LOG_FATAL("No charLen defined and body #0 has no bound"); throw; }
            const Vector3r sz=bv->max-bv->min;
            LOG_INFO("No charLen defined, taking avg bbox size of body #0 = "<<charLen);
            FOREACH(const shared_ptr<Body>& b, *scene->bodies){
                  if(!b || !b->bound) continue;
                  for(int i=0; i<3; i++) maxSpan=max(maxSpan,b->bound->max[i]-b->bound->min[i]);
      if(maxDisplPerStep<0) maxDisplPerStep=1e-2*charLen; // this should be tuned somehow…
      const long& step=scene->iter;
      Vector3r cellSize=scene->cell->getSize(); //unused: Real cellVolume=cellSize[0]*cellSize[1]*cellSize[2];
      Vector3r cellArea=Vector3r(cellSize[1]*cellSize[2],cellSize[0]*cellSize[2],cellSize[0]*cellSize[1]);
      Real minSize=min(cellSize[0],min(cellSize[1],cellSize[2])), maxSize=max(cellSize[0],max(cellSize[1],cellSize[2]));
      if(minSize<2.1*maxSpan){ throw runtime_error("Minimum cell size is smaller than 2.1*span_of_the_biggest_body! (periodic collider requirement)"); }
      if(((step%globalUpdateInt)==0) || avgStiffness<0 || sigma[0]<0 || sigma[1]<0 || sigma[2]<0){
            Vector3r sumForces=Shop::totalForceInVolume(avgStiffness,scene);
            LOG_TRACE("Updated sigma="<<sigma<<", avgStiffness="<<avgStiffness);
      Real sigmaGoal=stresses[state]; assert(sigmaGoal<0);
      // expansion of cell in this step (absolute length)
      Vector3r cellGrow(Vector3r::Zero());
      // is the stress condition satisfied in all directions?
      bool allStressesOK=true;
      if(keepProportions){ // the same algo as below, but operating on quantitites averaged over all dimensions
            Real sigAvg=(sigma[0]+sigma[1]+sigma[2])/3., avgArea=(cellArea[0]+cellArea[1]+cellArea[2])/3., avgSize=(cellSize[0]+cellSize[1]+cellSize[2])/3.;
            Real avgGrow=1e-4*(sigmaGoal-sigAvg)*avgArea/(avgStiffness>0?avgStiffness:1);
            Real maxToAvg=maxSize/avgSize;
            if(abs(maxToAvg*avgGrow)>maxDisplPerStep) avgGrow=Mathr::Sign(avgGrow)*maxDisplPerStep/maxToAvg;
            Real okGrow=-(minSize-2.1*maxSpan)/maxToAvg;
            if(avgGrow<okGrow) throw runtime_error("Unable to shring cell due to maximum body size (although required by stress condition). Increase particle rigidity, increase total sample dimensions, or decrease goal stress.");
            // avgGrow=max(avgGrow,-(minSize-2.1*maxSpan)/maxToAvg);
            if(avgStiffness>0) { sigma+=(avgGrow*avgStiffness)*Vector3r::Ones(); sigAvg+=avgGrow*avgStiffness; }
            if(abs((sigAvg-sigmaGoal)/sigmaGoal)>5e-3) allStressesOK=false;
      else{ // handle each dimension separately
            for(int axis=0; axis<3; axis++){
                  // Δσ=ΔεE=(Δl/l)×(l×K/A) ↔ Δl=Δσ×A/K
                  // FIXME: either NormShearPhys::{kn,ks} is computed wrong or we have dimensionality problem here
                  // FIXME: that is why the fixup 1e-4 is needed here
                  // FIXME: or perhaps maxDisplaPerStep=1e-2*charLen is too big??
                  cellGrow[axis]=1e-4*(sigmaGoal-sigma[axis])*cellArea[axis]/(avgStiffness>0?avgStiffness:1);  // FIXME: wrong dimensions? See PeriTriaxController
                  if(abs(cellGrow[axis])>maxDisplPerStep) cellGrow[axis]=Mathr::Sign(cellGrow[axis])*maxDisplPerStep;
                  // crude way of predicting sigma, for steps when it is not computed from intrs
                  if(avgStiffness>0) sigma[axis]+=cellGrow[axis]*avgStiffness; // FIXME: dimensions
                  if(abs((sigma[axis]-sigmaGoal)/sigmaGoal)>5e-3) allStressesOK=false;
      for(int axis=0; axis<3; axis++){ scene->cell->velGrad(axis,axis)=cellGrow[axis]/(scene->dt*scene->cell->refSize[axis]); }
      // scene->cell->refSize+=cellGrow;

      // handle state transitions
            if((step%globalUpdateInt)==0) currUnbalanced=Shop::unbalancedForce(/*useMaxForce=*/false,scene);
                  // sigmaGoal reached and packing stable
                  if(state==stresses.size()){ // no next stress to go for
                        if(!doneHook.empty()){ LOG_DEBUG("Running doneHook: "<<doneHook); pyRunString(doneHook); }
                  } else { LOG_INFO("Loaded to "<<sigmaGoal<<" done, going to "<<stresses[state]<<" now"); }
            } else {
                  if((step%globalUpdateInt)==0) LOG_DEBUG("Stress="<<sigma<<", goal="<<sigmaGoal<<", unbalanced="<<currUnbalanced);

void PeriTriaxController::strainStressStiffUpdate(){
      // update strain first
      //"Natural" strain, correct for large deformations, only used for comparison with goals
      for (int i=0;i<3;i++) strain[i]=log(scene->cell->trsf(i,i));
      //stress tensor and stiffness
      //Compute volume of the deformed cell
      // NOTE : needs refSize, could be generalized to arbitrary initial shapes using trsf*refHsize 
      // → initial cell size is always box, and will be. The cell repeats  periodically, initial shape doesn't (shouldn't, at least) dinfluence interactions at all/
      // → this is one more place where Hsize would make things shorter : volume=Hsize.Determinant; The full code relies on the fact that initial Hsize is a box. You didn't modify the equation btw, result is the same as in r1936, which was (with spaces...)
      //trsf*Matrix3r ( scene->cell->refSize[0],0,0, 0,scene->cell->refSize[1],0,0,0,scene->cell->refSize[2] ) ).Determinant()
      //remark : the volume of a parallelepiped u1,u2,u3 is always det(u1,u2,u3)
      Real volume=scene->cell->trsf.determinant()*scene->cell->refSize[0]*scene->cell->refSize[1]*scene->cell->refSize[2];

      //Compute sum(fi*lj) and stiffness
      stressTensor = Matrix3r::Zero();
      Vector3r sumStiff(Vector3r::Zero());
      int n=0;
      // NOTE : This sort of loops on interactions could be removed if we had callbacks in e.g. constitutive laws
      // → very likely performance hit; do you have some concrete design in mind?
      // → a vector with functors so we can law->functs->pushback(myThing), and access to the fundamental members (forces, stiffness, normal, etc.). Implementing the second part is less clear in my mind. Inheriting from law::funct(force&, stiffness&, ...)?
      FOREACH(const shared_ptr<Interaction>&I, *scene->interactions){
            if ( !I->isReal() ) continue;
            NormShearPhys* nsi=YADE_CAST<NormShearPhys*> ( I->phys.get() );
            GenericSpheresContact* gsc=YADE_CAST<GenericSpheresContact*> ( I->geom.get() );
            //Contact force
            Vector3r f= ( reversedForces?-1.:1. ) * ( nsi->normalForce+nsi->shearForce );
            //branch vector, FIXME : the first definition generalizes to non-spherical bodies but needs wrapped coords.
            //    Vector3r branch=(Body::byId(I->getId1())->state->pos-Body::byId(I->getId2())->state->pos);
            Vector3r branch= gsc->normal* ( gsc->refR1+gsc->refR2 );
            #if 0
                  // remove this block later
                  // tensorial product f*branch (hand-write the tensor product to prevent matrix instanciation inside the loop by makeTensorProduct)
                  //stressTensor(0,0)+=f[0]*branch[0]; stressTensor(1,0)+=f[1]*branch[0]; stressTensor(2,0)+=f[2]*branch[0];
                  //stressTensor(0,1)+=f[0]*branch[1]; stressTensor(1,1)+=f[1]*branch[1]; stressTensor(2,1)+=f[2]*branch[1];
                  //stressTensor(0,2)+=f[0]*branch[2]; stressTensor(1,2)+=f[1]*branch[2]; stressTensor(2,2)+=f[2]*branch[2];
            if( !dynCell )
                  for ( int i=0; i<3; i++ ) sumStiff[i]+=abs ( gsc->normal[i] ) *nsi->kn+ ( 1-abs ( gsc->normal[i] ) ) *nsi->ks;
      // Compute stressTensor=sum(fi*lj)/Volume (Love equation)
      stressTensor /= volume;
      for(int axis=0; axis<3; axis++) stress[axis]=stressTensor(axis,axis);
      LOG_DEBUG ( "stressTensor : "<<endl
                        <<stressTensor(0,0)<<" "<<stressTensor(0,1)<<" "<<stressTensor(0,2)<<endl
                        <<stressTensor(1,0)<<" "<<stressTensor(1,1)<<" "<<stressTensor(1,2)<<endl
                        <<stressTensor(2,0)<<" "<<stressTensor(2,1)<<" "<<stressTensor(2,2)<<endl
                        <<"unbalanced = "<<Shop::unbalancedForce ( /*useMaxForce=*/false,scene ) );

      if (n>0) stiff=(1./n)*sumStiff;
      else stiff=Vector3r::Zero();


00159 void PeriTriaxController::action()
      if (!scene->isPeriodic){ throw runtime_error("PeriTriaxController run on aperiodic simulation."); }
      const Vector3r& cellSize=scene->cell->getSize();
      //FIXME : this is wrong I think (almost sure, B.)
      Vector3r cellArea=Vector3r(cellSize[1]*cellSize[2],cellSize[0]*cellSize[2],cellSize[0]*cellSize[1]);
      // initial updates
      const Vector3r& refSize=scene->cell->refSize;
      if (maxBodySpan[0]<=0){
            FOREACH(const shared_ptr<Body>& b,*scene->bodies){
                  if(!b || !b->bound) continue;
                  for(int i=0; i<3; i++) maxBodySpan[i]=max(maxBodySpan[i],b->bound->max[i]-b->bound->min[i]);
      // check current size
      if(2.1*maxBodySpan[0]>cellSize[0] || 2.1*maxBodySpan[1]>cellSize[1] || 2.1*maxBodySpan[2]>cellSize[2]){
            LOG_DEBUG("cellSize="<<cellSize<<", maxBodySpan="<<maxBodySpan);
            throw runtime_error("Minimum cell size is smaller than 2.1*maxBodySpan (periodic collider requirement)");
      bool doUpdate((scene->iter%globUpdate)==0);
      if(doUpdate || min(stiff[0],min(stiff[1],stiff[2])) <=0 || dynCell){ strainStressStiffUpdate(); }

      bool allOk=true;
      // apply condition along each axis separately (stress or strain)
      for(int axis=0; axis<3; axis++){
            Real& strain_rate = scene->cell->velGrad(axis,axis);//strain rate on axis
            if(stressMask & (1<<axis)){   // control stress
                        // stiffness K=EA; σ₁=goal stress; Δσ wanted stress difference to apply
                        // ΔεE=(Δl/l)(K/A) - Grow is Δε, obtained by imposing the strain rate Δε/dt
                        LOG_TRACE(axis<<": stress="<<stress[axis]<<", goal="<<goal[axis]<<", cellGrow="<<strain_rate*scene->dt);
                  } else {  //accelerate the deformation using the density of the period, includes Cundall's damping
                        assert( mass>0 );//user set
                        Real dampFactor = 1 - growDamping*Mathr::Sign ( strain_rate * ( goal[axis]-stress[axis] ) );
                        strain_rate+=dampFactor*scene->dt* ( goal[axis]-stress[axis] ) /mass;
                        //if ((scene->iter%5000)==0){cerr << axis<<": stress="<<stress[axis]<<", goal="<<goal[axis]<<", velGrad="<<strain_rate<<endl;}
                        LOG_TRACE ( axis<<": stress="<<stress[axis]<<", goal="<<goal[axis]<<", velGrad="<<strain_rate );}
            } else {    // control strain, see "true strain" definition here http://en.wikipedia.org/wiki/Finite_strain_theory
                  ///NOTE : everything could be generalized to 9 independant components by comparing F[i,i] vs. Matrix3r goal[i,i], but it would be simpler in that case to let the user set the prescribed loading rates velGrad[i,i] when [i,i] is not stress-controlled. This "else" would disappear.
                  strain_rate = (exp ( goal[axis]-strain[axis] ) -1)/scene->dt;
                  LOG_TRACE ( axis<<": strain="<<strain[axis]<<", goal="<<goal[axis]<<", cellGrow="<<strain_rate*scene->dt);
            // steady evolution with fluctuations; see TriaxialStressController
            if (!dynCell) strain_rate=(1-growDamping)*strain_rate+.8*prevGrow[axis];
            // limit maximum strain rate
            if (abs(strain_rate)>maxStrainRate[axis]) strain_rate = Mathr::Sign(strain_rate)*maxStrainRate[axis];
            // do not shrink below minimum cell size (periodic collider condition), although it is suboptimal WRT resulting stress
            //if ((scene->iter%5000)==0){cerr<< axis <<": velGrad="<<strain_rate<<", maxCellsize"<<-(cellSize[axis]-2.1*maxBodySpan[axis])/scene->dt<<endl;}
            //if ((scene->iter%5000)==0){cerr <<"velGrad="<<strain_rate<<endl<<endl;}

            // crude way of predicting stress, for steps when it is not computed from intrs
            if(doUpdate) LOG_DEBUG(axis<<": cellGrow="<<strain_rate*scene->dt<<", new stress="<<stress[axis]<<", new strain="<<strain[axis]);
            // used only for temporary goal comparisons. The exact value is assigned in strainStressStiffUpdate
            // signal if condition not satisfied
                  Real curr=stress[axis];
                  if((goal[axis]!=0 && abs((curr-goal[axis])/goal[axis])>relStressTol) || abs(curr-goal[axis])>absStressTol) allOk=false;
                  Real curr=strain[axis];
                  // since strain is prescribed exactly, tolerances need just to accomodate rounding issues
                  if((goal[axis]!=0 && abs((curr-goal[axis])/goal[axis])>1e-6) || abs(curr-goal[axis])>1e-6){
                        if(doUpdate) LOG_DEBUG("Strain not OK; "<<abs(curr-goal[axis])<<">1e-6");
      // update stress and strain
      if (!dynCell) for ( int axis=0; axis<3; axis++ ){           
            // take in account something like poisson's effect here…
            //Real bogusPoisson=0.25; int ax1=(axis+1)%3,ax2=(axis+2)%3;
            //don't modify stress if dynCell, testing only stiff[axis]>0 would not allow switching the control mode in simulations,
            if (stiff[axis]>0) stress[axis]+=(scene->cell->velGrad(axis,axis)*scene->dt/refSize[axis])*(stiff[axis]/cellArea[axis]);
      for (int k=0;k<3;k++) strainRate[k]=scene->cell->velGrad(k,k);
      //Update energy input
      prevGrow = strainRate;
            if(doUpdate || currUnbalanced<0){
                  LOG_DEBUG("Stress/strain="<<(stressMask&1?stress[0]:strain[0])<<","<<(stressMask&2?stress[1]:strain[1])<<","<<(stressMask&4?stress[2]:strain[2])<<", goal="<<goal<<", unbalanced="<<currUnbalanced );}
                  // LOG_INFO("Goal reached, packing stable.");
                  if (!doneHook.empty()){
                        LOG_DEBUG ( "Running doneHook: "<<doneHook );
                  else { Omega::instance().pause(); }

void Peri3dController::action(){
      if(!scene->isPeriodic){ LOG_FATAL("Being used on non-periodic simulation!"); throw; }
      const Real& dt=scene->dt;

      /* "Constructor" (if (step==0) )
                  ps is the vector of indices, where stress is prescribed
                  pe is the vector of indices, where strain is prescribed
                  example: goal = 0b000110 : ps=(1,2,0,0,0,0), pe=(0,3,4,5,0,0)
                  lenPs (lenPe) is the meaningful length of ps (pe) (the zeros at the end of ps and pe has no meaning),
                        i.e. the number of indices with prescribed stress (strain)
      bool stressBasedSimulation=false; // true when all stresses are prescribed or if all prescribed strains equal zero
      if (progress==0) {
            lenPs=0; lenPe=0;
            stressGoal = Vector6r::Zero();
            strainGoal = Vector6r::Zero();
            for (int i=0; i<6; i++){
                  if (stressMask&(1<<i)){ // if stress is prescribed at direction i, add this direction to ps and increase lenPs by one
                        stressGoal(i) = goal(i);
                  } else{ // if strain is prescribed at direction i, add this direction to pe and increase lenPe by one
                        strainGoal(i) = goal(i);

            // variables used in evaluation of ideal stress and ideal strain for each part defined by ##Path
            paths[0]=&xxPath; paths[1]=&yyPath; paths[2]=&zzPath; paths[3]=&yzPath; paths[4]=&zxPath; paths[5]=&xyPath; // pointers to the Paths
            pathSizes[0]=xxPath.size(); pathSizes[1]=yyPath.size(); pathSizes[2]=zzPath.size();
            pathSizes[3]=yzPath.size(); pathSizes[4]=zxPath.size(); pathSizes[5]=xyPath.size();
            for (int i=0; i<6; i++) {pathsCounter[i] = 0;} // inidicator in which part of the path we are

            // path[0] is a pointer to xxPath
            // path[0]->operator[](j) is j-th Vector2r in path[0]
            // PATH_OP_OP(0,j,k) = path[0]->operator[](j).operator(k) is k-th element of j-th Vector2r of xxPath
            #define PATH_OP_OP(pi,op1i,op2i) paths[pi]->operator[](op1i).operator()(op2i)

            for (int i=0; i<6; i++) { 
                  for (int j=1; j<pathSizes[i]; j++) {
                        // check if the user defined time axis is monothonically increasing
                        { if ( PATH_OP_OP(i,j-1,0) >= PATH_OP_OP(i,j,0) ) {
                              throw runtime_error("Peri3dCoontroller.##Path: Time in ##Path must be monothonically increasing");
                  for (int j=0; j<pathSizes[i]; j++) {
                        // convert relative progress values of ##Path to absolute values
                        PATH_OP_OP(i,j,0) *= 1./PATH_OP_OP(i,pathSizes[i]-1,0);
                        // convert relative stress/strain values of ##Path to absolute stress strain values
                        if (abs(PATH_OP_OP(i,pathSizes[i]-1,1)) >= 1e-9) { // the final value is not 0 (otherwise always absolute values are considered)
                              PATH_OP_OP(i,j,1) *= goal(i)/PATH_OP_OP(i,pathSizes[i]-1,1);

            // set weather the simulation is "stress based" (all stress components prescribed or all prescribed strains equal zero)
            if (lenPe == 0) { stressBasedSimulation = true; }
            else { 
                  stressBasedSimulation = true;
                  for (int i=0; i<lenPe; i++) { stressBasedSimulation = stressBasedSimulation && PATH_OP_OP(pe(i),1,1)<1e9; }
      // increase the pathCounter by one if we cross to the next part of path
      for (int i=0; i<6; i++) {
            if (progress >= PATH_OP_OP(i,pathsCounter[i],0)) { pathsCounter[i]++; }

      /* values of prescribed stress (strain) rate in respect to prescribed path.
         The strain indices where stress is prescribed will be overwritten by predictor */
      for (int i=0; i<lenPe; i++){
            int j = pe(i);
            if (pathSizes[j] == 1) { // path has only one part (only final values are prescribed)
                  strainRate(j) = strainGoal(j)/(nSteps*dt); // ideal strain rate in respect of dSteps and dValue
            else if (pathsCounter[j] == 0) { // path has more parts, but we are still at the first one
                  const Real& dProgress = PATH_OP_OP(j,0,0); // progress difference of respective part of the path
                  const Real& dValue = PATH_OP_OP(j,0,1); // strain difference at the respective part of the path
                  strainRate(j) = dValue/(dProgress*nSteps*dt); // ideal strain rate in respect of dSteps and dValue
            else if (progress < 1.) {
                  const Real dProgress = PATH_OP_OP(j,pathsCounter[j],0) - PATH_OP_OP(j,pathsCounter[j]-1,0); // progress difference of respective part of the path
                  const Real dValue = PATH_OP_OP(j,pathsCounter[j],1) - PATH_OP_OP(j,pathsCounter[j]-1,1); // strain difference at the respective part of the path
                  strainRate(j) = dValue/(dProgress*nSteps*dt); // ideal strain rate in respect of dSteps and dValue
            else { strainRate(j) = 0; }
      for (int i=0; i<lenPs; i++){
            int j = ps(i);
            if (pathSizes[j] == 1) { // path has only one part (only final values are prescribed)
                  stressRate(j) = stressGoal(j)/(nSteps*dt); // ideal stress rate in respect of dSteps and dValue
            else if (pathsCounter[j] == 0) { // path has more parts, but we are still at the first one
                  const Real& dProgress = PATH_OP_OP(j,0,0); // progress difference of respective part of the path
                  const Real& dValue = PATH_OP_OP(j,0,1); // stress difference at the respective part of the path
                  stressRate(j) = dValue/(dProgress*nSteps*dt); // ideal stress rate in respect of dSteps and dValue
            else if (progress < 1.) {
                  const Real dProgress = PATH_OP_OP(j,pathsCounter[j],0) - PATH_OP_OP(j,pathsCounter[j]-1,0); //  progress difference of respective part of the path
                  const Real dValue = PATH_OP_OP(j,pathsCounter[j],1) - PATH_OP_OP(j,pathsCounter[j]-1,1); // stress difference at the respective part of the path
                  stressRate(j) = dValue/(dProgress*nSteps*dt); // ideal stress rate in respect of dSteps and dValue
            else { stressRate(j) = 0; }

      // Update - update values from previous step to current step
      stressOld = stress; // stresssOld = stress at previous step
      sigma = Shop::stressTensorOfPeriodicCell(/*smallStrains=*/true); // current stress tensor
      stress = tensor_toVoigt(sigma); // current stress vector
      stressIdeal += stressRate*dt; // stress that would be obtained if the predictor would be perfect
      strain += strainRate*dt; // current strain vector
      epsilon = voigt_toSymmTensor(strain,/*strain=*/true); // current strain tensor

      /* StrainPredictor
                  extremely primitive predictor, but roboust enough and works fine :-) could be replaced by some more rigorous in future.
                  In the direction with prescribed strain rate this prescribed strain rate is applied.
                  In direction with prescribed stress: from values of stress and strain in previous two steps the value of strain rate
                  is predicted so as the stress in the next step would be as close as possible to the ideal stress value,
                  see the documentation for more info
      if (lenPs > 0){ // if at least 1 stress component is prescribed (otherwise prescribed strain is applied in all 6 directions
            if (progress == 0 && stressBasedSimulation) { // the very first step, use compliance estimation (compliance matrix for elastic isotropic material)
                  Real complianceEstimation[6][6] = {
                        {1/youngEstimation, -poissonEstimation/youngEstimation, -poissonEstimation/youngEstimation, 0,0,0},
                        {-poissonEstimation/youngEstimation, 1/youngEstimation, -poissonEstimation/youngEstimation, 0,0,0},
                        {-poissonEstimation/youngEstimation, -poissonEstimation/youngEstimation, 1/youngEstimation, 0,0,0},
                        {0,0,0, (1+poissonEstimation)/youngEstimation,0,0},
                        {0,0,0, 0,(1+poissonEstimation)/youngEstimation,0},
                        {0,0,0, 0,0,(1+poissonEstimation)/youngEstimation}};
                  for (int i=0; i<lenPs; i++) {
                        strainRate(ps(i)) = 0;
                        for (int j=0; j<lenPs; j++) { strainRate(ps(i)) += complianceEstimation[ps(i)][ps(j)]*stressRate[ps(j)]; }
                        for (int j=0; j<lenPe; j++) { strainRate(ps(i)) += complianceEstimation[ps(i)][ps(j)]*stressRate[ps(j)]; }
                  //for (int i=0; i<lenPs; i++) { strainRate(ps(i)) -= maxStrainRate; }
            else { // actual predictor
                  Real sr=strainRate.cwise().abs().maxCoeff();
                  for (int i=0; i<lenPs; i++) {
                        int j=ps(i);
                        // linear extrapolation of stress error (difference between actual and ideal stress)
                        Real linPred = 2*(stress(j)-stressIdeal(j)) - (stressOld(j)-(stressIdeal(j)-stressRate(j)*dt));
                        // correction of strain in respect to the extrapolated stress error
                        if (linPred>0){strainRate(j) -= sr*mod;}
                        else {strainRate(j) += sr*mod;}
      // correction coefficient ix strainRate.maxabs() > maxStrainRate
      Real srCorr = (strainRate.cwise().abs().maxCoeff() > maxStrainRate)? (maxStrainRate/strainRate.cwise().abs().maxCoeff()):1.;
      strainRate *= srCorr;

      // Actual action (see the documentation for more info)
      const Matrix3r& trsf=scene->cell->trsf;
      // compute rotational and nonrotational (strain in local coordinates) part of trsf
      // prescribed velocity gradient (strain tensor rate) in global coordinates
      epsilonRate = voigt_toSymmTensor(strainRate,/*strain=*/true); 
      /* transformation of prescribed strain rate (computed by predictor) into local cell coordinates,
         multiplying by time to obtain strain increment and adding it to nonrot (current strain in local coordinates)*/
      nonrot += rot.transpose()*(epsilonRate*dt)*rot; 
      Matrix3r& velGrad=scene->cell->velGrad;
      // compute new trsf as rot*nonrot, substract actual trsf (= trsf increment), divide by dt (=trsf rate = velGrad
      //trsf = rot*nonrot;
      //velGrad = (rot*nonrot - trsf)/dt;
      velGrad = ((rot*nonrot)*trsf.inverse()- Matrix3r::Identity()) / dt ;
      progress += srCorr/nSteps;

      if (progress >= 1. || strain.cwise().abs().maxCoeff() > maxStrain) {
            if(doneHook.empty()){ LOG_INFO("No doneHook set, dying."); dead=true; }
            else{ LOG_INFO("Running doneHook: "<<doneHook); pyRunString(doneHook);}

void Peri3dController::update(){
      / * strain
            polar decomposition of transformation:
                  compute strain tensor from the non-rotational part of trsf, then rotate it back to global coords
      Matrix3r rot,nonrot; //nonrot=skew+normal deformation
      const Matrix3r& trsf=scene->cell->trsf;
      // compute matrix logarithm (see documentation)
      Eigen::SelfAdjointEigenSolver<Matrix3r> eigDec(nonrot);
      #if 0
            // small strains only
      LOG_TRACE("Updated strain value\n"<<strain);
      / * stress and stiffness
      const Real volume=scene->cell->trsf.determinant()*scene->cell->refSize[0]*scene->cell->refSize[1]*scene->cell->refSize[2];
      int nIntr=0;
      FOREACH(const shared_ptr<Interaction>& I, *scene->interactions){
            if(!I->isReal()) continue;
            Dem3DofGeom* geom=YADE_CAST<Dem3DofGeom*>(I->geom.get());
            NormShearPhys* phys=YADE_CAST<NormShearPhys*>(I->phys.get());
            // not clear whether this should be the reference or the current distance
            // current: gives consistent results for same configuration with different initial state
            // reference: does not change stress tensor when the same forces exist on interactions with changing length
            //const Real& d0=geom->refLength;
            const Real d0=(geom->se31.position-geom->se32.position).norm();
            const Vector3r& n=geom->normal;
            const Vector3r& fT=phys->shearForce;
            const Real fN=phys->normalForce.dot(n);
            for(int i=0; i<3; i++) for(int j=0;j<3; j++){
            const Real& kN=phys->kn; const Real& kT=phys->ks;
            // mapping between 6x6 matrix indices and tensor indices (Voigt notation)
            const int map[6][6][4]={
            const int kron[3][3]={{1,0,0},{0,1,0},{0,0,1}}; // Kronecker delta
            for(int p=0; p<6; p++) for(int q=p;q<6;q++){
                  int i=map[p][q][0], j=map[p][q][1], k=map[p][q][2], l=map[p][q][3];
      for(int p=0; p<6; p++)for(int q=p+1;q<6;q++) K(q,p)=K(p,q);
      LOG_TRACE("Updated stress (from "<<nIntr<<" interactions)\n"<<stress);
      LOG_TRACE("Updated stiffness tensor\n"<<K);

void Peri3dController::action(){
      // TODO: only call sometimes
      typedef Eigen::Matrix<Real,Eigen::Dynamic,Eigen::Dynamic> MatrixXr;
      typedef Eigen::Matrix<Real,Eigen::Dynamic,1> VectorXr;
      const Real& dt=scene->dt;
      / * 
      sigma = K * eps

      decompose the stiffness matrix depending on what is prescribed

      | sigma_u | = | Kuu Kup | * | eps_u |
      | sigma_p |   | Kpu Kpp |   | eps_p |


      eps_u=(Kuu^-1)*(sigma_u-Kup eps_p)

      (we replace all eps and sigma by their rates in the computation)
      int numP=0,numU=0; // number of prescribed and unprescribed strain components
      for(int i=0;i<6;i++) if(stressMask&(1<<i))numU++;
      // sub-matrices of the stiffness matrix
      MatrixXr Kuu(numU,numU), Kup(numU,numP);
      // epsP, epsU, sigU are _rates_
      VectorXr epsP(numP), epsU(numU), sigU(numU);
      // conversion from Voigt indices to 3x3 tensor indices (upper-triangle part)
      const int mapI[6]={0,1,2,1,2,0};
      const int mapJ[6]={0,1,2,2,0,1};
      int jU=0,jP=0;
      for(int j=0; j<6; j++){
            // prescribed stress, i.e. un-prescribed strain
                  int iU=0;
                  for(int i=0;i<6;i++){ if((stressMask&(1<<i))) Kuu(iU++,jU)=K(i,j);}
            } else {
                  epsP[jP]=(1/dt)*(j<3?1.:2.)*(goal(mapI[j],mapJ[j])-strain(mapI[j],mapJ[j])); / * multiply tensor shear by 2, see http://en.wikiversity.org/wiki/Introduction_to_Elasticity/Constitutive_relations /
                  int iP=0;
                  for(int i=0;i<6;i++){ if((stressMask&(1<<i))) Kup(iP++,jP)=K(i,j);}
      assert(jU==numU); assert(jP==numP);
      // if Kuu is (nearly) singular, the goal strain is inf and the corresponding velGrad component then NaN
      // in such case, sanitize it with some random value (irrelevant which one)
      // FIXME: find a better way for this than determinant (expensive for larger matrices)
      if(Kuu.rows()*Kuu.cols()>0 && Kuu.determinant()<1e-20){ Kuu+=MatrixXr(Kuu.cols(),Kuu.rows()).setIdentity(); LOG_TRACE("Kuu after sanitization\n"<<Kuu); }
      // assemble strain rate tensor (as matrix), from prescribed values epsP and computed values epsU
      jU=0; jP=0;
      Matrix3r eps; // rate!
      for(int j=0; j<6; j++){
            if(stressMask&(1<<j)) eps(mapI[j],mapJ[j])=epsU[jU++];
            else eps(mapI[j],mapJ[j])=(j<3?1.:.5)*epsP[jP++]; / * multiply shear components back by 1/2 when converting from Voigt vector back to tensor /
      eps(2,1)=eps(1,2); eps(0,2)=eps(2,0); eps(1,0)=eps(0,1);
      Matrix3r& velGrad=scene->cell->velGrad;
      // rate of (goal strain - current strain)
      Real mx=max(abs(velGrad.minCoeff()),abs(velGrad.maxCoeff()));
      if(mx>abs(maxStrainRate)) velGrad*=abs(maxStrainRate)/mx;
      // TODO: check unbalanced force and run some hook when the goal state is achieved

Generated by  Doxygen 1.6.0   Back to index